Sensing Properties of Gas Sensor Based on Adsorption of NO2 with Defect, Pristine, Fe and Si-MoS2 Layer

نویسندگان

  • S. R. Shakil
  • S. A. Khan
چکیده

Two-dimensional (2D) layered materials are currently being considered as entrant for future electronic devices. Molybdenum disulphide (MoS2) belongs to a family of layered transitional metal dichalcogenides(TMDS),has a unique characteristics of showing intrinsic semiconducting nature is being considered a major advantageous over graphene (which has no intrinsic band gap) as a two-dimensional (2D) channel material in field effect transistors(FET). In the paper, the results of investigations are presented concerning the affects of adsorption of NO2 gas on the surface of MoS2, defect-MoS2, Si-MoS2 and Fe-MoS2 layer. The changes density of states (DOS) and electrostatic difference potential of Si-MoS2 by applying different gate voltage were studied. We proposed that, NO2 might play an important role on MoS2 layer that can be used as gas sensor. In the research, it has been shown that in the case of gas sensor, the adsorption of NO2 with MoS2, Fe-MoS2, Si-MoS2 and defect-MoS2 play an important rule for sensing behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitive detection of Nitrogen Dioxide using gold nanoparticles decorated Single Walled Carbon Nanotubes

The modification of carbon nanotubes (CNTs) could enhance their surface and electric properties. To this purpose, we explore the impact of a thin layer of gold (Au) on the surface of single wall carbon nanotubes (SWCNTs). SWCNTs have been grown by Chemical Vapor Deposition (CVD) method and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen diox...

متن کامل

Charge-transfer-based Gas Sensing Using Atomic-layer MoS2

Two-dimensional (2D) molybdenum disulphide (MoS2) atomic layers have a strong potential to be used as 2D electronic sensor components. However, intrinsic synthesis challenges have made this task difficult. In addition, the detection mechanisms for gas molecules are not fully understood. Here, we report a high-performance gas sensor constructed using atomic-layered MoS2 synthesised by chemical v...

متن کامل

Sensing Performance of Sc-doped B12N12 Nanocage for Detecting Toxic Cyanogen Gas: A Computational Study

Adsorption of cyanogen molecule on the surface of pristine and Sc-doped B12N12 nanocage is scrutinized using at DFT calculations to investigating its potential as chemical nanosensors. The results show that cyanogen is weakly adsorbed on the pristine B12N12 and consequently its electrical properties are changed insignificantly. In order to improve the...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014